
Summary

• AI-enabled drug design, followed by traditional medicinal chemistry and structure-based drug design, 

led to the discovery of two novel chemical series with potent 5-HT2A receptor agonism and optimal CNS 

drug-like properties.  

• Novel compounds exhibited potent human 5-HT2A receptor activation of G protein-dependent and 

independent signaling, consistent with the in vitro functional activity profile of psilocin. In addition, 
compounds showed improved selectivity for 5-HT2A versus 5-HT2B receptor activation relative to 

psilocin.

• Novel compounds also induced HTR in mice with lower hallucinogenic potency than psilocin, as well 

as antidepressant-like activity in the rat FST. Studies are in progress to evaluate the activity of selected 

compounds in a rat model of treatment-resistant depression.

• These results demonstrate the potential for the discovery of novel, potent, small molecule 5-HT2A 

receptor agonists for the treatment of mood disorders with improved safety profiles relative to 
psilocybin/psilocin. 

• As it remains unclear if a hallucinogenic subjective experience is necessary for antidepressant effects, 
novel non-hallucinogenic 5-HT2A receptor agonists currently are being explored for antidepressant-like 

activity as potential therapeutics that may offer more convenient dosing to a broader patient population.

Objective
Treatment-resistant depression impacts approximately 30% of people with major depressive disorder, and therapeutic approaches with robust 

and sustained efficacy remain a significant medical need [18].

Psilocybin, and its active metabolite psilocin, are naturally-occurring psychedelic compounds found in hundreds of species of hallucinogenic 

mushrooms with an extensive history of use in humans.  These compounds exert functional activity at  a variety of  central nervous system 
receptors, including serotonin receptors, of which agonism at 5-HT2A receptors is believed to mediate the psychedelic effects [15]. 

Accumulating clinical research indicates that psilocybin demonstrates rapid and lasting antidepressant efficacy following single administration, 
including in treatment-resistant patients [7,9,10]. 5-HT2A receptor activation may play a role in the mood-improving effects of psilocybin [13].

Preclinical research also supports the therapeutic potential of psilocybin and psilocin, based on neuroplasticity-promoting and antidepressant-

like behavioral effects [8,11,12,14,16,17]. Interestingly, some studies suggest 5-HT2A receptor activation-induced hallucinogenic activity may not 
be required for therapeutic-like effects.

A goal of Entheogenix Biosciences (EGX) research is to use a combination of artificial intelligence (AI)-based drug design, traditional medicinal 
chemistry and structure-based drug design to discover novel 5-HT2A receptor agonists with optimal CNS drug-like properties that show in 

vitro and in vivo pharmacological effects consistent with psilocybin/psilocin, including antidepressant-like activity.

Methods
AI-Enabled Hit Identification Methods
To generate initial hit molecules, we used our Ligand Design methodology, which uses a small molecule generator, Deriver [1], and assesses proposed molecules 
using MatchMaker [2] to select those predicted to preferentially bind targets over anti-targets. Briefly, MatchMaker is a deep learning model that predicts binding 
between a small molecule drug/binding site pair by using paired structural features of the small molecule with the 3D structural features of the protein binding 

sites. MatchMaker is trained with positive example complexes of a molecule within a pocket by threading drug-target interaction (DTI) data onto 3D structures of 

protein–ligand binding sites obtained from the Protein DataBank and SwissModel. Negative data is simulated by shuffling positive DTI pairs and designating them 
alternative proteins to avoid any small molecule structural bias.

To employ this methodology, we first collected protein structure models for all targets and anti-targets The lone target of interest was 5-HT2A, with anti-targets 
including 5-HT2B, DRD2/3, and HRH1. Both homology models and crystal structures were explored for each of the targets under consideration. For 5-HT2A, 
at the time of the study the PDB structures available (6A93, 6A94) were both co-crystallized with antagonist molecules, with these sites selected to represent 
5-HT2A. It was deemed that this was an acceptable site given that this same site would accommodate agonists (a later paper would confirm agonists binding [3]). 
In the end, while several anti-targets were used in preliminary test runs, we elected to focus on 5-HT2B as the major anti-target, utilizing structure models already 
embedded in our pocketome (i.e., the proteins used within training) as well as several picked specifically with co-crystal structure (6DRX, 6DRY, 6DRZ). 

With targets and anti-target sites selected, we ran Ligand Design to explore chemistry within the Enamine REAL Space. Initial generations used random combinations 

of synthons, with subsequent generations selecting molecules as parents for the next generation based on a weighted scoring function for target over anti-target. 

The method was run until convergence, which was defined as 2 consecutive generations where no new top scoring compounds were found. Chemistry explored 
was limited to those that had aliphatic amines, to bias selection for a well-established pharmacophore. Molecules were selected by balancing activity for target 

and selectivity over anti-target. 

In vitro pharmacology methods
Calcium flux assays were performed using human 5-HT receptor subtype GPCR Biosensor Assays in agonist mode. Gq-mediated secondary messenger signaling of 

calcium mobilization is monitored with a calcium-sensitive dye and is used as a readout for GPCR activation. Stably-transfected cell lines (U2OS) expressing human 
5-HT2A and 5-HT2C receptors were loaded with the calcium-sensitive dye in exchange of culture media prior to drug treatments.  Reference and test compound 
agonist activity was measured on a FLIPR Tetra (MDS) via fluorescence detection of the calcium-sensitive dye. 5-HT was used as the assay reference agonist.  Data 
were normalized to the maximal and minimal response observed in the presence of control ligand and vehicle.

β-Arrestin activity was determined using a stably-transfected cell line (U2OS) expressing human 5-HT2A receptors with the PathHunter assay (Eurofins 
DiscoverX), which utilizes an Enzyme Fragment Complementation technology with β-galactosidase as the functional reporter.   The enzyme is split into two 
inactive complementary portions expressed as fusion proteins in the cell.  Upon 5-HT2A activation and β-Arrestin recruitment, complementation occurs, restoring 
β-galactosidase activity.   Cells were incubated with reference or test compound, with 5-HT as the reference agonist, and β-Arrestin recruitment, via 5-HT2A 
receptor activation and β-galactosidase complementation was measured using chemiluminescent PathHunter Detection Reagents.  Data were normalized to 
the maximal and minimal response observed in the presence of control ligand and vehicle.

IPOne assays were performed using stably-transfected cell lines (CHO-K1) expressing human 5-HT2A or 5-HT2B receptors.  Upon activation of these receptors, 
Gq-mediated myo-Inositol 1 phosphate (IP1) production is detected by a Homogeneous Time-Resolved Fluorescence (HTRF) competitive immunoassay, 
whereby an  IP1 analog coupled to a fluorophore (acceptor) competes with endogenous IP1 for binding to a labeled anti-IP1 antibody (donor).   The resulting 
signal is  inversely proportional to the concentration of IP1 in the sample.   Cells were incubated with an IP1 inhibitor (to prevent degradation and allow 
detection) and either reference compound or test compound.  α-Me-5-HT was used as the assay reference agonist. Activation of 5-HT2A or 5-HT2B receptors 
was measured via accumulation of IP1 detected by HTRF.   Agonist activity of test compounds was expressed as a percentage of the activity of the reference  
agonist at its EC100 concentration.  

In Vivo Pharmacology Methods
Mouse Head Twitch Response (HTR).  Male C57BL/6J mice at 6-8 weeks (Jackson Laboratories) were group housed in a vivarium at UCSD. The room was 
operated on a reverse light cycle (1900h on; 0700h off) with food and water available ad libitum, except during testing. All testing was conducted between 1000h 
and 1800h. Mice were surgically implanted with a small neodymium magnet attached to the cranium and fixed with dental cement. After a minimum 2-week 
recovery period, the mice were injected intraperitoneally with drug or vehicle and immediately placed in a glass cylinder surrounded by a magnetometer coil and 

activity was recorded during a 30 min test [4]. Coil voltage was amplified, low pass filtered (2 kHz cutoff), and digitized (20 kHz sampling rate). Head twitches were 
identified in the recordings using a validated technique based on artificial intelligence [5]. Data were plotted as the average number of HTR recorded during the 
test for each treatment group and analyzed using a 1-way Analysis of Variance (ANOVA; GraphPad Prism). If there was a significant overall effect of treatment at 
the p<0.05 level, then a Dunnett’s post hoc test was performed to compare each treatment group to the vehicle condition.  

Rat Forced Swim Test (FST) .  Male adult Sprague Dawley rats were used for FST experiments. Animals were grouped 3/cage and housed in a room operated 

on a light cycle (1900h off; 0700h on) with food and water available ad libitum, except during testing.  Rats were handled daily for a minimum of 3 days prior to 
testing.  On Day 1 following a 1 hr acclimation to the testing room, rats were subjected to a 15 min pre-swim in 24 ± 1°C water.   Once dried, rats were administered 
vehicle, ketamine or imipramine, and EGX compounds. Eight hours following the pre-swim, rats received a second administration of test articles except for 

ketamine. A final third administration of test articles except for ketamine was given 15 or 30 min prior to the 5 min FST on Day 2. Data were plotted as the average 
% of vehicle response for frequency or duration of immobility recorded during the test for each treatment group and analyzed using a 1-way Analysis of Variance 
(ANOVA; GraphPad Prism). If there was a significant overall effect of treatment at the p<0.05 level, then a Dunnett’s post hoc test was performed to compare 
each treatment group to the vehicle condition. 
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Figure 1:  AI-enabled discovery of EGX-1, followed by traditional medicinal chemistry and structure-based drug design, 

led to identification of novel and potent 5-HT2A agonists with CNS drug-like properties

Initial hit molecules were discovered 

using a deep learning model to 
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molecules and targets of interest 
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5-HT2B, DRD2/3 and HRH1).
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5-HT2A receptor over anti-targets.
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Figure 2.  A. (Upper left) G protein dependent and independent signaling pathways and assay readouts associated with 5HT receptor activation (modified from [19]). (Lower left) 
EGX compounds rank-ordered by agonist activity (log(Emax/EC50); calcium flux assay; increasing activity left to right) from initial AI-enabled compound hit (EGX-1) to several EGX 

compounds with activity greater than psilocin. (Right panel) Representative concentration response curves of compound activity at 5-HT2A, 5-HT2B, and 5-HT2C receptors in the 

indicated assays (Ca++ (calcium flux), β-Arrestin recruitment, and IPOne (inositol phosphate (IP) 1 accumulation via IP3 stimulation)). Compound activity preference determined by 
comparing relative agonism (log(Emax/EC50), normalized to assay reference agonist). The reference agonist for each receptor/assay is indicated as either 5-HT or α-Me-5-HT. B.  
EGX compounds rank-ordered by relative agonist selectivity for 5-HT2A over 5-HT2B receptors (ΔΔlog(Emax/EC50); IPOne assay). Square symbols, compounds with selectivity 
ratio > 30,000. Assay reference (α-Me-5-HT) used for normalization at each receptor (5-HT2A/5-HT2B selectivity = 1). 

Figure 2: Structure activity relationship (SAR) analysis identifies highly active 5-HT2A receptor agonists with selectivity 
over 5-HT2B receptors

A.  EGX SAR identifies compounds with increased 5-HT2A agonism activity compared to psilocin

B. EGX SAR identifies compounds selective for 5-HT2A over 5-HT2B receptors, with potential to reduce risk of cardiac valvulopathy associated with 5-HT2B agonism
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Figure 3:  The mouse Head Twitch Response (HTR) assay identified Entheogenix 5-HT2A agonist compounds with hallucinogenic 
and non-hallucinogenic potential 
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Figure 3.  Mouse HTR measured over 

30 min.  (A) Psilocin[6] and (B) 
Compounds EGX-A and EGX-B 

induced robust HTR (upper panels). 
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Figure 4:  EGX compounds showed antidepressant-like activity in the rat Forced Swim Test (FST)

EGX compounds significantly reduced immobility, a behavioral readout of antidepressant-like activity in the FST

Figure 4.  Effect of pro-hallucinogenic EGX compounds (HTR positive) on immobility during FST.  Left: Illustration of the FST.  Center: EGX-A (3, 10, and 30 mg/kg, i.p.) was dosed 3 times 
at 23.5, 16, and 0.5h before FST, and ketamine (10 mg/kg, i.p.) was dosed once at 23.5h before FST.  Right: EGX-B (10, 30, 60 mg/kg, i.p.) and imipramine (30 mg/kg, i.p.) were dosed 3 times 

at 23.5, 16, and 0.25h before FST. * p<0.05, ** p<0.01, **** p<0.0001 difference from vehicle, Dunnett’s post hoc test.
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Summary table
Table 1: In vitro and in vivo profiles of hallucinogenic and non-hallucinogenic EGX compounds

in vitro profile in vivo profile

5-HT2A EC50 (nM) 5-HT2B EC50 
(nM)

5-HT2C EC50 
(nM)

Mean HTR  at 
Max Active or 
Tested Dose

HTR Min 
Effective 

Dose 
(mg/kg, IP)

HTR ED50 
(mg/kg, IP)

Mean Mouse 
Brain/Plasma 

Ratio (IP)

Mean Rat 
Brain/Plasma 

Ratio (IP)

Ca++ β-Arr IPOne IPOne Ca++

Hallucinogenic

Psilocin[6] 51.0 28.0 18.2 21.6 1.1 39 0.3 0.15 12 NA

EGX-1 7,700 4,200 NA NA >10,000 62* 30* 17* NA NA

EGX-A 4.2 17.2 2.8 34.7 42.2 50 3 1.7 4.4 3.4

EGX-B 9.0 25.8 9.2 81.1 73.52 41 10 3.4 5.7 3.8

Non-hallucinogenic
EGX-C 2.4 4.5 <1.0 19.3 280.0 5 >30 >30 2.6 NA

EGX-D 3.0 0.7 1.1 143.0 70.0 8 >60 >60 4.6* 8.8

*Subcutaneous administration
NA: not available


