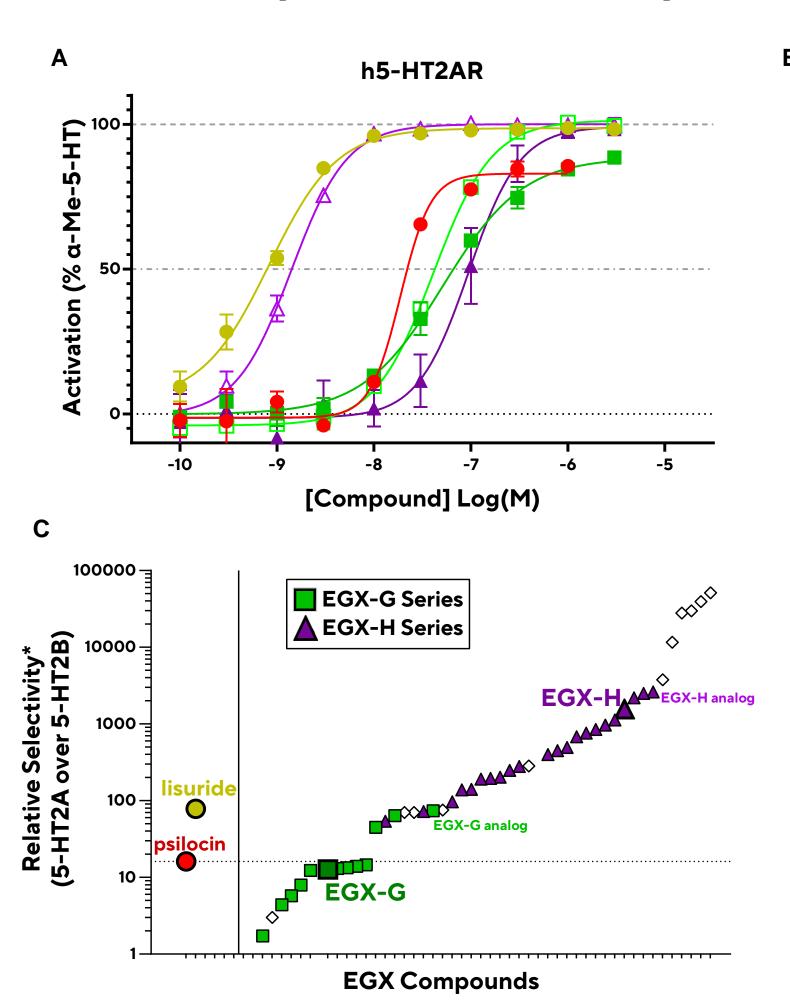


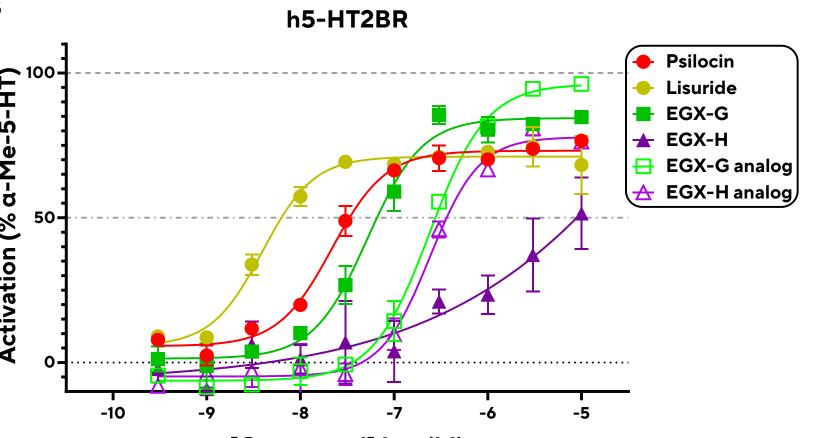
Discovery of novel 5-HT2A receptor agonists with non-hallucinogenic potential and translational antidepressant drug-like profiles

INTRODUCTION

TREATMENT-RESISTANT DEPRESSION


- Impacts approximately 30% of patients with major depressive disorder.¹
- Currently, there are limited treatment options, and long-lasting (>2 weeks) treatments are not yet available.

PSYCHEDELICS


- Chemically diverse group of 5-HT2AR agonists, such as psilocybin and LSD.
- Clinically, they show rapid and lasting antidepressant efficacy following single dose.^{2,3}
- Preclinically, antidepressant mechanisms may include promotion of **neuroplasticity**^{4, 5}

1) 5-HT2AR OVER 5-HT2BR AGONIST SELECTIVITY

EGX compounds exhibit improved 5-HT2AR over 5-HT2BR selectivity

Relative Agonism = $\left(\log\left(\frac{Test\ Compound\ Emax}{Test\ Compound\ EC50}\right)\right) - \left(\log\left(\frac{Control\ Emax}{Control\ EC50}\right)\right);$ Reference Agonist = a-Me-5-HT

[Compound] Log(M)

In vitro screening using human 5-HT2AR and 5-HT2BR agonism IP1 accumulation HTRF assays structural activity relationship (SAR) guides understanding (A and B, respectively).

EGX-G and EGX-H are hits from distinct chemical series with promising 5-HT2AR agonist potency and/or selectivity over 5-HT2BR (C, Table 1). Ongoing SAR analyses continue to identify potent analogs with improved 5-HT2AR agonist selectivity (EGX-H Series), compared to reference hallucinogenic and non-hallucinogenic compounds (C, Table 1).

Table 1. 5-HT2AR & 5-HT2BR Agonism Readouts of EGX, Psilocin & Reference Non-hallucinogenic Compounds

Human Target (Readout)	EGX-G	EGX-H	Psilocin	Lisuride	2-Br-LSD		
5-HT2A (Gq-IP1); EC50 (nM) [Emax]	51.3 [89%]	92.8 [100%]	18.2 [83%]	0.83 [99%]*	0.81 [60%] ^{8†}		
5-HT2B (Gq-IP1); EC50 (nM) [Emax]	51.9 [84%]	2,522 [51%]	21.6 [73%]	3.91 [71%]*	>10,0008†		
*Acquaria Caul Mabilization Agapist Boodouts 5, UT2A: ECEO - 278pM, Emax - 77%; 5, UT2B: ECEO > 10uM; 7Cg dissociation BRET assay							

Aequorin Ca++ Mobilization Agonist Readouts 5-H12A: EC50 = 3/8nM, Emax = 7/8; 5-H12B: EC50 > 10uM; 7Gq dissociation BRE1 assay.

Further agonist profiling at 5-HT receptor subtypes revealed **distinct pharmacological profiles**, compared to reference hallucinogenic and non-hallucinogenic compounds (Table 2).

Table 2. Other 5-HT Receptor[^] Agonism Readouts of EGX, Psilocin & Reference Non-hallucinogenic Compounds

Human Target (Readout)	EGX-G	EGX-H	Psilocin	Lisuride	2-Br-LSD			
5-HT2A (Arrestin); EC50 (nM) [Emax]	119 [35%]	172 [84%]	27.8 [41%]	15.3 [44%] ¹⁰	0.73 [38%] ⁸			
5-HT2C (Gq-Ca++); EC50 (nM) [Emax]	5.56 [93%]	112 [82%]	11.9 [105%]	7.76 [75%] ⁹ *	3.85 [46%] ⁸⁺			
5-HT1A (Gi-cAMP); EC50 (nM) [Emax]	369 [74%]	17,150 [105%]	2,053 [40%]	1.26 [98%] ⁹ *	11.3 [73%] ⁸ ‡			
5-HT1B (Gi-cAMP); EC50 (nM) [Emax]	<5 [100%]	>100,000	<5 [100%]	26.3 [85%] ^{9*}	5.28 [84%] ^{8‡}			
Targets of potential relevance to antidepressant-like effects and/or expression of HTR; *[35S]GTPyS assay; ⁺ Gq dissociation BRET assay; ⁺ GoM dissociatio BRET assa								

1. Voineskos, D., et al. (2020). Neuropsych Dis Treat 16, 221-234; 2). Bao, L. X., et al. (2021). Neuropsych Dis Treat 16, 221-234; 4). Ly, C., et al. (2021). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2021). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2022). N Engl J Med 387, 1637-1648; 3). Hibicke, M., et al. (2023). Cell Reports 23.11; 3170-3182; 5). Shao, L. X., et al. (2021). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2021). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2021). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2021). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2023). Cell Reports 23.11; 3170-3182; 5). Shao, L. X., et al. (2023). Cell Reports 23.11; 3170-3182; 5). Shao, L. X., et al. (2023). Cell Reports 23.11; 3170-3182; 5). Shao, L. X., et al. (2023). Cell Reports 28; 42(3): 112203 9). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2021). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2023). Cell Reports 23.11; 3170-3182; 5). Shao, L. X., et al. (2023). Cell Reports 23.11; 3170-3182; 5). Shao, L. X., et al. (2023). Cell Reports 28; 42(3): 112203 9). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2023). Cell Reports 28; 42(3): 112203 9). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024). Neuron 109.16; 2535-2544; 6). Papoian, T., et al. (2024).

Carrie A. Bowen, Tanweer A. Khan, Robert B. Perni, Thomas C. Robertson, Holden B. Janssens, Jonathon D.S. Holt, Patrick Kleine, Adam L. Halberstadt, Srinivas Rao, and Glenn F. Short III

CHALLENGES

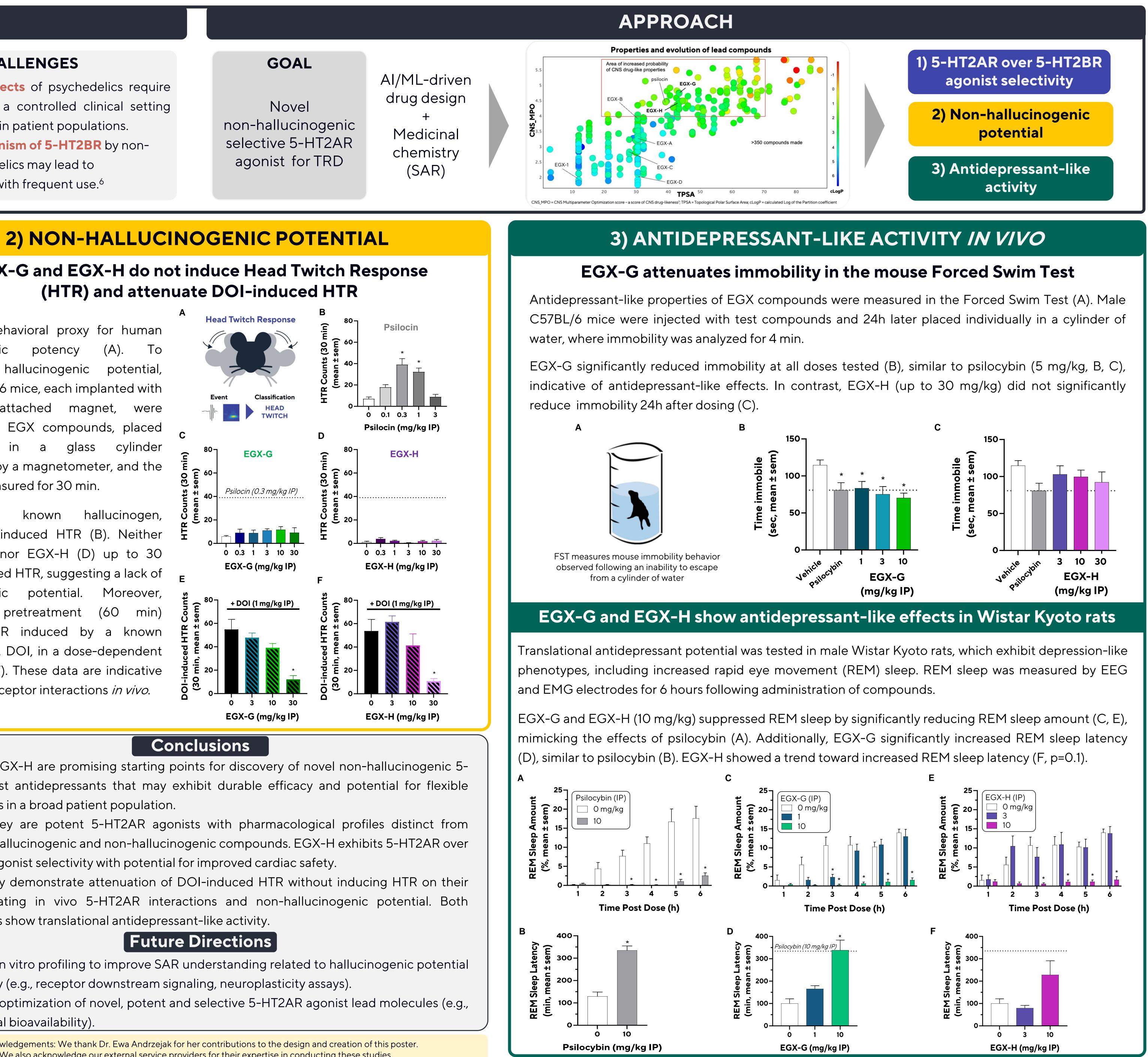
Hallucinatory effects of psychedelics require administration in a controlled clinical setting and exclude certain patient populations.

Concomitant agonism of 5-HT2BR by nonselective psychedelics may lead to valvulopathy risk with frequent use.⁶

EGX-G and EGX-H do not induce Head Twitch Response (HTR) and attenuate DOI-induced HTR

HTR is a behavioral proxy for human hallucinogenic (A). potency investigate hallucinogenic potential, male C57BL/6 mice, each implanted with cranium-attached magnet, were administered EGX compounds, placed individually in a glass cylinder surrounded by a magnetometer, and the HTR was measured for 30 min.

known hallucinogen, Psilocin, significantly induced HTR (B). Neither EGX-G (C) nor EGX-H (D) up to 30 mg/kg induced HTR, suggesting a lack of hallucinogenic potential. Moreover, (60 compound pretreatment min) reduced HTR induced by a known hallucinogen, DOI, in a dose-dependent manner (E, F). These data are indicative of 5-HT2A receptor interactions *in vivo*.


Conclusions

EGX-G and EGX-H are promising starting points for discovery of novel non-hallucinogenic 5-HT2AR agonist antidepressants that may exhibit durable efficacy and potential for flexible dosing options in a broad patient population.

- In vitro, they are potent 5-HT2AR agonists with pharmacological profiles distinct from reference hallucinogenic and non-hallucinogenic compounds. EGX-H exhibits 5-HT2AR over 5-HT2BR agonist selectivity with potential for improved cardiac safety.
- In vivo, they demonstrate attenuation of DOI-induced HTR without inducing HTR on their own, indicating in vivo 5-HT2AR interactions and non-hallucinogenic potential. Both compounds show translational antidepressant-like activity.

• Enhanced in vitro profiling to improve SAR understanding related to hallucinogenic potential and efficacy (e.g., receptor downstream signaling, neuroplasticity assays). • Continued optimization of novel, potent and selective 5-HT2AR agonist lead molecules (e.g., increase oral bioavailability).

Acknowledgements: We thank Dr. Ewa Andrzejak for her contributions to the design and creation of this poster. We also acknowledge our external service providers for their expertise in conducting these studies.

Presentation #: PSTR182.03